بحث: في ح سيئة بعض عزلات الفطر Trissolcus grandis Thomson و أنها الجانبية في منطق الفطر Eurygaster integriceps Putn.

الملخص

المقدمة

أهم الفطور المرضية للحشرات والذي تم تسجيله مؤخراً كمبيد حيوي على عدد من الأطعمة الحشرية (4)، تودي الإصابة بالفطر المرضي إلى تدفق وارد الحشرة على النبات (7) و انخفاض حصوله (8). وعند T. grandis (9) وحديقة أسوق الفطر النباتي (10-11) يترتبهم المخاطر من التنبؤ بالفطر المرضي في الحشرة (12). إن النجاح الفكاري لم يكن محدوداً مع بعض العزلات الفطرية في الحشرة (13). كثف مؤثر من عزلات الفطر Eurygaster integriceps Puton، يمكن لبعض العزلات المثالية في منطق الفطر

النتائج (10) مما يستدعي مكاحله للكفاءة الطازج المتاحة بما في ذلك استخدام الأصناف المقاومة (8)، المتميزة (29، 30، 31) Edington المفترسات والممرضات الحشرية (17). وقد أشار و (5) Moore إلى أن يمكن تعقيم مجموعات النباتات من خلال B. bassiana استخدام مبيد حيوي مركب من بعض عزلات الفطر ضمن برنامج مكافحة متكامل لهذه الحشرة (18)، بحيث أظهرت براء عن التجارب ارتفاع نسبة الموت من مجموعات النباتات المختلفة مع Metarrhizium anisopliae والफطر B. bassiana بنظر الشاهد عن العامل (19) إل ان نجاح الفكاري المرضي في الحشرة (11) من مجموعات الأطعمة لا يعد فقط على القدرة الإباريدية العالية (11)، وإنما يعد أيضاً على تدفق سهولة هذا الفطر على بعض النباتات غير المستفيدة (4). قبل أن يكون لهذا الفطر في الطبيعة كمبيد حيوي. فإنه من الفكاري المستقل تأثير هذه الفطري في الأطعمة الحشرية والمحترمات غير المستفيدة (28، 31). ونظرأ لأن تنبؤات بعض عزلات الفطر تعبير من أهم الأطعمة الحشرية المتاحة في حقول القمح والعنب في سورية (1)، وخصوصاً أن استخدام بعض العزلات الصناعية للفطر في الحقل أنتج نسبة موت في B. bassiana

Beauveria bassiana (Balsamo) Vuillemin

T. grandis

Beauveria bassiana

Eurygaster integriceps

Puton

Beauveria bassiana

T. grandis

Larvae: RPM (Beauveria bassiana)

Detritus: RPM (T. grandis)

Beauveria bassiana

Eurygaster integriceps

Puton

الروج. أما العزلة الثانية (SPT22) فقد تم الحصول عليها من مختبر المرضات الحشرية في إيكادارا، حيث تم الحصول على هذه العزلة من حشرات السوزة المجموعة من مناطق البضائع في تركيا.

تحضير العقل المفطري

زرعت عزلات العقل المتصلة عليها في أطاق بتي حاوية عل (SDYA) Sabouraud Dextrose Yeast extract Agar وسط حيت زرع خمسة أطاق لكل عزلة وذلك بإضافة 100 ميكرولتر من العقل المفطري يتراوح بين 1×10⁶ وoge كوبينية/مل لكل طبق بتي.

ضعت الأطاق عند 25 درجة مئوية حتى تام البيوغ. حصلت الأطاق إضافة 10 مل من الماء المفطر مضافًا له محلول 0.05% Tween 80 وسط حيزة ميكرومترية، وُضعت نبضة عزلات الأطاق من خالى خلق ثلاثة أطاق بتي بقطرة من العقل المفطري لكل عزلة من عزلات العقل، ثم ضعفت الأطاق عند 25 درجة مئوية لمدة 24 ساعة. ومن فحص 200 نوعة كوبينية على الأقل لكل طبق بتي، واعتبرت البيوغ منتشه إذا تجاوز طول أنبوبية إبلاتها نصف طول البيوغ.

نفذ التحية

نذل التجربة توقيع التفاعلات الجاذبة لعطلات العقل الصلبان، وحضن كبيرة تكزيع مخلوقات (2×10⁶، 2×10⁷) نوعة كوبينية/مل. في ارتفاعات معالجة حشرة السوزة، حيث زيت من الضرروات المفطرة للعقل المفطري نقلت الملاحظات المعمولة إلى عزلات بذور اكترية تجربة ورق ترشيح لمعادلة عادة واحدة. وتم ححم العقل المفطري الرازي، وضع بعدا الملاحظات المعمولة في عزلات بذور اكترية جديدة مزودة برشاش مملحة بالعقل المفطري. حضن الأنبوب عند 23±2 درجة مئوية لمدة 24 ساعة. ومن بعدا تقدم مجموعات بذور حشرة السوزة لهذه الملاحظات وحصنا نوعة حكم وقت لإذاعة. كما تم ملاحظة جميع من الملاحظات بالماء المفطر وبالطاقة السابقة الذكرها كشاهد.

لم شغ في السوزة بالماء المفطر لكل العزلات المستخدمين في ارتفاع الملاحظات (SPT22) ولم تترك عبر حشرة السوزة المفرط (SPT22) و oauth الملاحظات اخترى اير حشرة (خصة ذكور وخمسمت إثنان سليمة من الناحية الظاهرية) لكل تكزيع من التراكيز.

مواد البحث وطرق العمل

لضغ البيوض حشرة السوزة

ジェメت حشرات السوزة البالغة من حقول منطقة إيكادارا (حلب- سورية)، ووضعنا على نبات مصنع شام 6 و 0.25% بلاستيكية تحتوي حزينة تقاطعية (50% ترب، 25% رمل و 25% سماز بلدي مزخر،) غطيت الأسس بأغطية شفافة في حفارة للنور، ثم حضنت عند 23±2 درجة مئوية 60-70% وفترة إضاءة 16 ساعة/ليل. تم مراقبة الحشرات بشكل يومي حيث جمعت كافة البيوض المتصلة على النبات بشكل يومي وزرت عند 25±2 درجة مئوية ورطوبة 90%، لتقديمهما فيما بعد للملاحظات من أجل دراسة.

إكثر المناظفات مختارة

تم الحصول على حشرة حشرة السوزة المتصلة عليها بالنوع تيستيكسية (SPT22) Trissolcus grandis (SPSR2) برمي مخدرة مستمرة في إيكادارا (حلب- سورية). ويعتبرها من الطيور المخدرة. تم هذا الأنبوب في الخبرة بالبيوض حشرة السوزة المخزنة وفق الشروط أعلاه الذي، حيث وضع كل مخلوق بذور الملاحظ عليها في أكترية اكترية بلاستيكية شفافة بقطر 1.5 سن وطول 10 سم، أغطى نقطة صغيرة من الظفر تغذى النور. جيد، ووزدت كل أنبوب بقطرة من العمل الطبياني لتأنير المناظفات المختارة. حضنت هذه الأنبوب في الخبرة لمدة خمسة أيام عند 25±2 درجة مئوية ورطوبة 50±2 و16 ساعة إضاءة في ب. ب. عيد، اعيد بعدا بالظفر.

جمع حشرات السوزة

عزلات العقل

ジェメت العزلة B. bassiana ثم الحصول على عزلات من من حقول القمح في منطقة الأولى (SPT22) من حشرات السوزة وجلب القمح في منطقة السلطة. مجلة وقائية النباتات العربية، مجلد 28، عدد 2 (2010)
المنشأة والمناشدة

نتائج معاملة حشرة البئير

فيما كان من الواضح عدم تأثر النسبة الجنسية للذكور والإناث بين الأنواع المختلفة، بما أن تركيز هذا النسبة كان في GROUP 2 في جميع المساحات المختلفة (جدول 2).

استمرار التحقيق في خصائص البئير و.RGBR2 و SPSR3، مع تركيز resonate عند مستويات مختلفة.

أظهرت النتائج أن التركيز القاتل النسيجي، بالاعتماد على كمية الماء المستخدمة، بلغ 8.3% و 16.0% عند تركيز 3 و 2 أب. بالتالي، تركيز 2 أب. في هذا الاختبار، ثابت، ثابتة عند تركيز 3 أب. في هذا الاختبار، ثابتة عند تركيز 3 أب. في هذا الاختار
Average number of parasitized eggs, emergence rate and hatching rate of treated *T. grandis*, with two concentrations of *B. bassiana* isolates.

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Average number of parasitized eggs ± SE</th>
<th>Average No. of emerged adults ± SE</th>
<th>Average hatching rate ± SE</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPT2</td>
<td>2×10⁴</td>
<td>1.0×10⁴</td>
<td>91.27±1.8</td>
</tr>
<tr>
<td>SPSR2</td>
<td>2×10⁴</td>
<td>1.0×10⁴</td>
<td>90.71±2.4</td>
</tr>
<tr>
<td>F. pr.</td>
<td>1.0×10⁵</td>
<td>1.0×10⁴</td>
<td>91.23±1.6</td>
</tr>
<tr>
<td>C. V.</td>
<td>2×10⁴</td>
<td>1.0×10⁴</td>
<td>92.85±1.05</td>
</tr>
</tbody>
</table>

Table 1.

Female longevity and percent of females of *T. grandis* treated with *B. bassiana*.

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Female longevity (days ± SE)</th>
<th>M: F ± SE</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPT2</td>
<td>8.8</td>
<td>8.8</td>
</tr>
<tr>
<td>SPSR2</td>
<td>19.3</td>
<td>19.3</td>
</tr>
<tr>
<td>F. pr.</td>
<td>2.71</td>
<td>2.71</td>
</tr>
<tr>
<td>C. V.</td>
<td>12</td>
<td>12</td>
</tr>
</tbody>
</table>

Table 2.

Discussion:
The titre of *B. bassiana* was determined at 2×10⁵ conidia/mL, whereas *B. bassiana* strain SPSR2 at 2×10⁷ conidia/mL. The results indicate that *B. bassiana* is more effective than *B. bassiana* strain SPSR2 in controlling the bug *Orius nigripes* in an agricultural field. The efficacy of the fungus may be due to the production of different extracellular enzymes (i.e., protease, lipase, and chitinase) that may damage the bug's cell wall, leading to the death of the bug. Further studies are needed to determine the exact mechanism of action of the fungus against the bug *Orius nigripes*.
Abstract

Use of microbial agents for the control of insect pests is useful only when they are virulent to the pest without harming natural enemies. Efficiency of Beauveria bassiana isolates on the Sunn pest, Eurygaster integriceps Put., and its egg parasitoid, Trissolcus grandis Thomson, when treated with two conidial suspension concentrations of 2x10^5 and 2x10^7 conidia/ml⁻¹ was evaluated. Mortality of Sunn pest every two days, fecundity and longevity of the egg parasitoid were recorded. Results showed that B. bassiana isolate SFSR2 was pathogenic to Sunn pest, with corrected mortalities of 63% and 100% for the concentrations of 2x10^5 and 2x10^7 conidia/ml⁻¹, respectively. However, B. bassiana did not significantly reduce the number of parasitized eggs, nor the longevity of T. grandis adults exposed to the same fungal doses. These findings indicate that B. bassiana can be used safely in the field for the control of Sunn pest without significantly harming the egg parasitoid T. grandis.

Keywords: Sunn pest, Beauveria bassiana, Egg parasitoid, Trissolcus grandis, Biological control.

Corresponding author: A.N. Trissi, Plant Protection Department, Faculty of Agriculture, Aleppo University, Aleppo, Syria, Email: n_trissi@yahoo.com

References

Received: September 11, 2009; Accepted: May 6, 2010

