العلاقة المرضية بين فايتيولايزما مكنسة الساحرة على الطرطيط (Suaeda baccata Forssk.)، وتلك (Suaeda baccata Forssk.)

العلاقة المرضية بين فايتيولايزما مكنسة الساحرة على الطرطيط (Suaeda baccata Forssk.)، وتلك (Suaeda baccata Forssk.)

الم funcionários

العلاقة المرضية بين فايتيولايزما مكنسة الساحرة على الطرطيط (Suaeda baccata Forssk.)، وتلك (Suaeda baccata Forssk.)

المقدمة

بدأت الأمراض التي تسببها فايتيولايزما تاكل جايباً مهماً في علم أمراض النبات في العقد الأولين من القرن المنصرم، إذ سجلت العديد من الأنواع التي تسببها فايتيولايزما على عدد كبير من المحاصيل الاقتصادية ونباتات الأدغال والأعشاب في العالم وفي العراق، وتركزت بحوث الكثير من الباحثين لكشف عنها وتحديد أسبابه ودراسة و بصورة مفصلة. (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20).

مجمل المحاولات لتحديد فايتيولايزما اعتماداً على الأمراض التي تسببها النباتات التي تغذيها، وقلت على هذا الأساس إلى المجموعة الأولى، وتسبب أمراض التدهور والأخرى تسبب أمراض ترق الأزهر (Phytophthora)، وأعتمد نظام تصفح فايتيولايزما بثبّ الاحصائات الطلائية والجيولوجية، إذ استخدم البروبتيزيم DWARPA وفوتوشمس DX و (22, 23) بعد كل فترة من ثلاثة أشهر. (22, 23)، ومسجل Faidel (23) بعد كل فترة من ثلاثة أشهر، (22, 23) ومسجل Faidel (23) بعد كل فترة من ثلاثة أشهر، (22, 23)

موجات البحث وطرقية

استخلاص ودراسة فايتيولايزما

طعن 200 عينة من أوراق نبات الطرطيط المصابة بالفايتولايزما ومع 200 عينة من وسط الزلزل (0.3 جزيء 0.03 جزيء 0.004 جزيء 0.004، موريفين، (MOPS) N-morpholine-propane sulfonic acid (PVP) 0.01، (Ethylene diamine tetraacetic acid) EDTA 0.60، (Demannitol) 0.01، (Cysteine) 0.004، (Glycine) 0.049، (Polyvinyl pyrrolidone) 0.049، (Polyvinyl pyrrolidone) 0.049، (Polyvinyl pyrrolidone) 0.049، (Polyvinyl pyrrolidone) 0.049

وستنتج (Acholeplasma)
تحضير المصل مضاد الفايبرولايزما

زيج 3.5 مل من مصل الفايبرولايزما النباتي الحراري على
400 ميكروغرام لحم في خلطة مسحوق بروتئين كامل بشكل
جيد حتى أصبح المزيج مناسبًا واستخدم في حق الأربية، ثم
احتياج لحم 0.4 مل في فتحة 2 و 0.8 مل في فتحة
الأسود و 0.8 مل في فتحة ابتلاع تحت الجلد في منطقة
الظهر. بعد

يكون 0.3 مل كحبتة ملعقة دم بعد
ثالثة أصبح أهلية واختبر احتواها على الأسماء،
باستخدام الاختبارات بسبب على شريحة بعيدة
غير ممنق للمقارنة. سحب الدم الكلي للأربيب بعد أسابيع من
نقطة من القلب مباشرة بواسطة مقتطف 20 مل، وبعدها 19
رجم في فتحة صغيرة، وترک 1-2 ساعة عند درجة حرارة
الماء ثم في الأجل الثلاثة بعد درجة حرارة 4 درجة مئوية.
سحب المصل وأخلط مصل تم طرد مركزي بسرعة دورة
معدلة وقائية للنباتات العربية، مجلد 20، ص 19 (2001)
تفاعل بينهما يظهر بشكل خطوطي ترسب (شكل 1). وترى أن هذا النتائج
إليكية تشير لتفاوت في التفاعلية بين كل طرق التفاعلية. وترى أن هذه النتائج
نوعية في تكييفها في حالة إمكانية استخدامها وتغذية النبات من البذور
المصنعة. وترى أن البذور المصنعة للفايتوبرولاما في البذور تتفاوت موضحاً
مع خلايا الفايتوبرولاما أو بروتيناتها المستقلة من نباتات أخرى
صابة بالفيتوبالما المسببة لدى الأزهار وترى البذور على الطماطم/البندورة وتقطع ساقات النباتات تسق أنزيمات BS
البروتين والكواص على الكوسو الساخن (شكل 2). ولا يظهر
مثل هذه التفاعل مع نباتات المغارة أو مع مستخلصات نباتات مصاب
للبروتينات الأخرى (شكل 1). تستخدم هذه الاكتشاف من قبل
عدد من الباحثين لدراسة الصحة بين نباتات مختلفة من الفايتوبرولاما.
استخدم الفيروسين في البذور الفايتوبرولاما المسببة لامراض الأعصاب (9).
أذن تسمى البذور الفايتوبرولاما المستقلة عن البذور المصنعة والمحترقات
(7). وترى في تكييف البذور الفايتوبرولاما السامة للبروتينات النباتية في
الخصائص (14) وترى في تكييف البذور الفايتوبرولاما تقطيع الأزهار وجزءه (5).
أذن تكتسب الفايتوبرولاما التي تسبب أمراض الأعصاب ونتائج بين
البروتين (4). (11) وفي الكشف عن عزلات الفايتوبرولاما السامة
للطبخ النباتية ونسبة (3).

محول كلوريد الكالسيوم 0.85% مدة 24 ساعة. ثم جفف بواسطة
6- أوراق رطب من غاب مضيف لإنتاج ساقه. روعدت
عملية التكييف في خم سع مزيد حزاز 40-60° م. مع البذور
بعلن البذور المخصبة وراثية 10 دقائق (7.5 غ صبيري الكوداس
في 250 مل محلول إزالة ساقه المصنعة من 225 مل ماء
البروتين، 250 مل ماء مغرواخ، 50 مل حمص الخفية). أرى النبيذ
بتغذية البذور في محلول إزالة ساقه مدة 15 دقيقة حتى ظهر خط
التربس.

النتائج والمناقشة
تغذية الفايتوبرولاما
تم الحصول على تغذية من الفايتوبرولاما السامة لمرض
نكتة الساقه على البذور المصنعة على تكرار كثير من البكرول
(Percol)، لوحظ تجمعها في المنطقة المصفرة بين 30 و50% من
البروتين. روى. في البذور المصنعة على الفايتوبرولاما خالية تماماً من
المكونات الخلاوية الأخرى لتم تلك كثافة العضيات النباتية
كالميكروكابيات والأغشية الخلوية المظللة والكيركلوريل مع كلمة
الفايتوبرولاما نفسها عند عرض التجاه الفايتوبرولاما نفسها (11) مما أدى
لإعطاء تعرية كثافة الفايتوبرولاما على أكثر من 90% من
كلية الغشاء مغلف بـ Colloidal silica (22). استخدم البروتين
في البذور الالتحامي الذي يعمل على تقسيم
طرود الميكروكابيات وتقلل من تصدم الخلايا مع بعضها البعض عن
أن الأغشية الخلوية غير منفذة له مما يمنع حصول تغذية في
كثافة الغشاء أثناء عملية الالتحامي. كما أنه يعمل على سرعة فصل
خلايا الفايتوبرولاما ودعم إبطالها الفيروسي للخلايا (11).

تحضير المصل المضاد
أوضح استقرار التربس الدائم على شرارة زجاجية احتواء مصل
البروتين المحصور بتحضيرات الفايتوبرولاما السامة لتمكين الساقه على
الغذاء في جسم مستمدة مصنوعة لها بعد 21 يوماً من عملية
العدين، إذ تشكل عند مزج فلز من البذور من قطرة من
تحضيرات الفايتوبرولاما وعند مستخلصات بذور ماصباها وبدون
هذا الراسب بين البذور غير المعتمد وتحضيرات الفايتوبرولاما أو
مستخلصات بذور ماصبة بها.

اختتام ابتداء المراجع
أوضح نتائج استبدال التربس الدائم على شرارة زجاجية احتواء مصل
البروتين من الخشوف الفايتوبرولاما السامة لتمكين الساقه على
الغذاء في جسم مستمدة مصنوعة لها بعد 21 يوماً من عملية
العدين، إذ تشكل عند مزج فلز من البذور من قطرة من
تحضيرات الفايتوبرولاما وعند مستخلصات بذور ماصبة بها وبدون
هذا الراسب بين البذور غير المعتمد وتحضيرات الفايتوبرولاما أو
مستخلصات بذور ماصبة بها.

شامل 1. العلاقة العلاجية بين المصل المضاد للفايتوبرولاما مكونة
الساقه على البذور المصنعة (A) مصل غير مصنع، (B) مصل
مصنعة 1- محلول مطحنة PBS، 2- بروتينات الفايتوبرولاما،
3- بروتينات الفايتوبرولاما المستقلة بواسطة الاستيرن،
4- بروتينات بذور مصمم، 5- فايتوبرولاما مقاية بذور جزء، 6- مستخلص
ذات مطرح مصباح

Figure 1. Serological relationship between suaeda Witches' broom phytoplasma antiserum and its antigens. (A) antiserum, (B) normal serum. 1- PBS buffer, 2- Phytoplasma proteins, 3- Phytoplasma proteins extracted by acetone, 4- Proteins of healthy plant, 5- partially purified phytoplasma, 6- Extract of infected suaeda plant

جدول 1. طبيعة الاستجابة المناعية بين المعمل المعاد لفاثيوبلازما مكونة الساهرة على الطرطع وبروتينات الفاثيوبلازما المستخلصة من انواع نباتات أخرى (المستخدمات)، باستعمال اختبار الاستجابة المناعية المزدوج.
Table 1. Doule immuno diffusion reactions between the antiserum of suaeda Witches' broom and the protein of phytoplasmas extracted from different plant species.

<table>
<thead>
<tr>
<th>الزخم المناعي</th>
<th>الاعراض المرضية</th>
<th>الانتي جن مهتم (الاسم العربي)</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Fasciation</td>
<td>نفاطا المنبق</td>
<td>Amaranthus caudatus L.</td>
</tr>
<tr>
<td>- Fasciation</td>
<td>نفاطا المنبق</td>
<td>Busus sempervirens L.</td>
</tr>
<tr>
<td>- Phylody</td>
<td>نفاطا المنبق</td>
<td>Callistemon viminalis (Sol. Ex. Goerth.)</td>
</tr>
<tr>
<td>- Witches' broom</td>
<td>نفاطا المنبق</td>
<td>Carthamus oxyantho M.B.</td>
</tr>
<tr>
<td>Phylody, Stubborn</td>
<td>نفاطا المنبق</td>
<td>Catharanthus roseus L.G.Don.</td>
</tr>
<tr>
<td>Stubborn & Yellowing</td>
<td>نفاطا المنبق</td>
<td>Citrus deliciosa Ten.</td>
</tr>
<tr>
<td>Stubborn & Yellowing</td>
<td>نفاطا المنبق</td>
<td>Citrus sinensis (L.) Osbeck</td>
</tr>
<tr>
<td>Fasciation</td>
<td>نفاطا المنبق</td>
<td>Cucumis sativus L.</td>
</tr>
<tr>
<td>- Witches' broom</td>
<td>نفاطا المنبق</td>
<td>Eugenius sp.</td>
</tr>
<tr>
<td>- Phylody</td>
<td>نفاطا المنبق</td>
<td>Gardenia jasminoides Ellis.</td>
</tr>
<tr>
<td>Phylody & Fasciation</td>
<td>نفاطا المنبق</td>
<td>Jasminum sambac (L.) Ait</td>
</tr>
<tr>
<td>Phylody & Big bud</td>
<td>نفاطا المنبق</td>
<td>Lactuca serriola L.Mesa</td>
</tr>
<tr>
<td>Fasciation</td>
<td>نفاطا المنبق</td>
<td>Lycopersicon esculentum Mill.</td>
</tr>
<tr>
<td>- Witches' broom</td>
<td>نفاطا المنبق</td>
<td>Melissa officinalis L.</td>
</tr>
<tr>
<td>Little leaves</td>
<td>نفاطا المنبق</td>
<td>Morus alba L.</td>
</tr>
<tr>
<td>Proliferation & Fasciation</td>
<td>نفاطا المنبق</td>
<td>Olea europaea L.</td>
</tr>
<tr>
<td>Little leaves</td>
<td>نفاطا المنبق</td>
<td>Punica granatum L.</td>
</tr>
<tr>
<td>Phylody & Fasciation</td>
<td>نفاطا المنبق</td>
<td>Pyrus malus L.</td>
</tr>
<tr>
<td>Phylody & Fasciation</td>
<td>نفاطا المنبق</td>
<td>Rosa sp.</td>
</tr>
<tr>
<td>Phylody</td>
<td>نفاطا المنبق</td>
<td>Sesamum indicum L.</td>
</tr>
<tr>
<td>Phylody & Fasciation</td>
<td>نفاطا المنبق</td>
<td>Solanum melongena L.</td>
</tr>
<tr>
<td>Aerial tubers & Purple top roll</td>
<td>نفاطا المنبق</td>
<td>Solanum tuberosum L.</td>
</tr>
<tr>
<td>Witches' broom</td>
<td>نفاطا المنبق</td>
<td>Suaeda baccata Forssk.</td>
</tr>
<tr>
<td>- Phylody</td>
<td>نفاطا المنبق</td>
<td>Tagetes patula L.</td>
</tr>
<tr>
<td>Fasciation</td>
<td>نفاطا المنبق</td>
<td>Vigna unguiiculata (L.) Walp.</td>
</tr>
</tbody>
</table>

وقد أظهرت نتائج هذا الاختبار وجود علاقة مسلية بين فاثيوبلازما الطرطع، ذلك التي تسبب نباتات الطماطم/البذور، والتراب الأبيض، والخضري، والأخضر الأخضر (شكل 2)، ولم تظهر علاقة بين فاثيوبلازما الطرطع وذلك التي تسبب المسمى والبذور كما كان متوقعاً نظرًا لجودة الإصابة بالفاثيوبلازما من كل من الطماطم والمسمى.

![شكل 2. العلاقة الفصلية بين المعمل المعاد لفاثيوبلازما مكونة الساهرة على الطرطع (B) وبروتيناتها المستخلصة من نباتات أخرى (المستخدمات). 1= متسخين نبات مصمغ، 2= متسخين نبات مصمغ، 3= متسخين نبات التربة الأرضية مصمغ، 4= متسخين نبات الطرطع مصمغ، 5= متسخين نبات الخس البري مصمغ، 6= متسخين نبات الكربون الأرجوبي مصمغ.](image)

Figure 2. Serological relationship between suaeda Witches' broom phytoplasma antiserum (B) and its proteins extracted from other plants. 1= Extract of suaeda healthy plant, 2= Extract of infected tomato plant, 3= Extract of infected mulberry plant, 4= Extract of infected suaeda plant, 5= Extract of infected wild lettuce plant, 6= Extract of infected yellow thistle plant.
Abstract

This study was carried out to determine the serological relationship between Suaeda (Suaeda baceatun) Witches’ broom phytoplasma (SWB) and those infecting several other crops and weeds in Iraq. Partial purification of suaeda phytoplasma was achieved by centrifugation through percoll gradient (15-50%) at 20000g for 20 min. Antiserum for this phytoplasma was obtained within 6 weeks following 12 intramuscular and subcutaneous injections in a rabbit. The rabbit was bleed two weeks after the last injection. Results of double immuno diffusion test showed a positive reaction between SWB-AS and its antigen or extracts from infected plants, in PBS buffer, in an agarose medium containing sodium dodecyl sulfate (SDS). These results indicated the possibility of utilizing this technique for phytoplasma detection. A cross-reaction was noticed between SWB-AS and extracts from tomato plants showing Witches’ broom and big bud symptoms, mulberry fasciation, wild lettuce phytoplasma and yellow thistle which indicated that these phytoplasmas are serologically related. No reaction was observed between SWB-AS and extracts from phytoplasma-infected potato and sesame, indicating that such phytoplasmas represent a different serogroup.

Key words: suaeda, phytoplasma, Witches’ broom.

Corresponding author: R.A. Al-Ani, Plant Protection Department, Faculty of Agriculture, University of Baghdad, Abu Ghrizb, Baghdad, Iraq.

References

المراجع

