Abstract


Introduction

Disease damage is a threat to crop production in the whole world. In Tunisia, diseases and drought are the most important constraints-limiting production of rainfed cereals.

A broad genetic base is a key element for any crop improvement process and must be available in order to enhance yield. Commercially acceptable cultivars can be bred from introduced genetic resources. The evaluation of such a germplasm is therefore essential to identify desirable traits. For this purpose, some lines of bread wheat and barley from the International Center for Agricultural Research in the Dry Areas (ICARDA) germplasm pools were tested for their reaction to fungal diseases under the semi-arid conditions of the Kef area in northwest of Tunisia. When bread wheat was inoculated with the common bunt pathogen (Tilletia laevis Kuhn), the most resistant were lines 5 and 6 having a mean of 1% of bunted spikes. The 25 lines of barley inoculated with the covered smut pathogen (Ustilago segetum (Pers.) Ditmar) did not show smutted spikes. Based on natural infection of barley, lines 20, 23, and 25 were resistant to net blotch, and 2 and 5 to powdery mildew, and 1, 5, 16, and 18 to scald. When the overall resistance to those foliar diseases was evaluated, line 1 was the best, followed by lines 9, 10, and 18.

Key words: Bread wheat, barley, disease resistance, selection, Tunisia.

Materials and Methods

Germplasm

Thirteen bread wheat (Figure 2) and 25 barley lines (Figure 3) from ICARDA germplasm pools were tested for resistance to wheat common bunt and barley covered smut following artificial inoculation. The evaluation was extended to fungal diseases that naturally occur during the study.

Fungal pathogens

Two fungal pathogens were artificially inoculated to bread wheat and barley seeds using teliospore inoculum at the rate of 20 g/kg. Tilletia laevis Kuhn (syn Tilletia foetida (Wallr.) Liro.) (6) collected from wheat bunted spikes in the Experimental Station of Ecole Supérieure d’Agriculture du Kef (Tunisia) was inoculated to 13 bread wheat lines; T. laevis Kuhn is the most important bunt fungal species in Tunisia (7) compared to T. tritici (Bjerk.) Wolf (syn T. caries (DC.) Tul.) (6). Ustilago segetum (Pers.) Ditmar (syn Ustilago hordei (Pers.) Lagerh) (13) collected from the northwest of Tunisia was inoculated to 25 barley lines.

Naturally occurring fungal diseases were observed only on barley. They were net blotch caused by Pyrenophora teres Drechsler (anamorph Drechslera teres (Sacc.) Shoemaker) (2), powdery mildew caused by Erysiphe graminis DC. Ex Mérat (anamorph Oidium monilioides Link.) (3), and scald caused by Rhynchosporium secalis (Oudem.) J. J. Davis (9).

All the fungal pathogens mentioned above were observed and described earlier in Tunisia (8).

Field experiments

The bread wheat and barley lines were investigated in this preliminary trial for their disease resistance under the rainfed conditions of the Kef semi-arid region in Tunisia during three cropping seasons 1997/98, 1998/99, and 1999/00. The monthly mean temperature was more or less similar over the three years, but monthly rainfall was highly variable within and between years (Fig. 1). Experiments were conducted at the Experimental Station of Ecole Supérieure d’Agriculture du Kef in 1 m long plots (1, 12) of two rows in the first year and four rows in the second and third years.

Inoculated seeds were planted at the rate of 100 kg/ha during the second half of November and spikes were harvested late May for barley and early June for bread wheat.

Barley foliar diseases were evaluated at the heading stage using the 0-9 scale (10). Bread wheat common bunt and barley covered smut diseases were evaluated by the percentage of diseased spikes at the grain maturity stage. When infection level was equal or less than 5%, the line was considered resistant.

Results

Bread wheat bunt disease

The evaluation of bread wheat lines for their reaction to bunt disease revealed high resistance of lines 5 and 6 with only 1% of bunted spikes (Figure 2). Lines 2, 3, 4, and 8 were less resistant (around 10 to 20%) with high variability. All other remaining lines were susceptible to highly susceptible (mean of bunted spikes between 30 and 50%).

Barley diseases

During the three cropping seasons, no barley smutted spikes (covered smut) were observed in all tested lines, even though their seeds were artificially inoculated. The most resistant barley lines to net blotch were lines 20, 23, and 25. Their average infection severity were close to 1 on scale 0-
The average reaction of barley lines to powdery mildew ranged between 2 and 5 (on scale 0-9). The most resistant were lines 2 and 5 and the most susceptible were lines 6, 20, 23, 24, and 25 (Figure 3). Some barley lines were lightly infected with scald with mean infection severity less than 1 (on scale 0-9). These were lines 1, 5, 16, and 18. However, lines 4, 6, 11, 12, 13, 15, and 25 were susceptible. Their mean infection severity ranged between 3 and 5. The remaining lines had intermediate reaction (Figure 3). Results reported in Fig. 4 describe the overall reaction of barley lines to the three observed foliar diseases (net blotch, powdery mildew, scald). Among all, line 1 had the highest overall resistance, followed by lines 9, 10, and 18, with an average of infection severity less than 3 (on scale 0-9). All the remaining lines appeared to be less resistant.
Pedigree of barley lines: 1 = 80-5145/Giza121/Pue (ICB88-1156-16AP-0AP-6AP-0TR-0AP), 2 = Alpha/Arar (ICB88-1136-10AP-0AP-3AP-0AP), 3 = Arar/Ligneell7 (ICB85-0625-6AP-6AP-2AP-1APH-0TR-0AP-3AP-0TR-0AP), 4 = Arar/Rhane-03 (ICB85-0624-3AP-5AP-0TR-5AP-0TR-0AP-0AP-3AP-0TR-OAP), 5 = Arizona5908/Aths/Ligneell04/4/Arizona5908 /Aths//Asse/3/F208-74 (ICB89-0841-4AP-3AP-0TR-0AP), 6 = As46/Aths (ICB86-0516- 10AP-0TR-3AP-0TR-0AP), 7 = As46/Aths*2/WI2197//Arabische (ICB88-0293-1AP-0TR-4AP-0AP-11AP-0TR-0AP), 8 = As46/Aths*2/5/C10102/4/CM67/ U.Sask.1800/Pro/CM67/3/DL70 (ICB89-0278-1AP-1AP-0TR-0TR-0AP), 9 = As46/Aths*5/C10102/4/CM67/U.Sask.1800/Pro/CM67/3/DL70 (ICB89-0278-1AP-1AP-3AP-0TR-0AP), 10 = As46/Pro/Bal.16/Api/4/11012-2/Tern/H252/3/Nola’s’/5/Assala (ICB82-0172-2AP-0AP-0AP-36AP-0TR), 11 = Chaaran01/3/ Arizona 5908/Aths/Bgs/4/Ager//Api/CM67/3/Cel/W1269/Ore (ICB89-0799-4AP-1AP-2AP-0TR-0AP), 12 = Chaaran-01/W12291/5/Caco’S’/3/Api/CM67/ 1594/4/P382934 (ICB91-0110-0AP-0AP-0AP), 13 = C1172/Pro/Be/3/Api/cm67/4/Giza120/5/Satter2/Namur (ICB5-1058-3AP-3AP-0TR-3AP-0TR-0AP-0AP-1AP-0TR-OAP), 14 = DeirAlla106/Cel/3/Np/Bailey/607/Ch-Du (ICB88-0724-1AP-1APH -1APH-3AP-0TR-0AP), 15 = DeirAlla106/Cel/Sr.115/Pro/Bc /3/Api/CM67/3/Giza120 (ICB83-0211-0AP-3AP-0TR-0AP), 16 = M64-76/Ben/Jo/York/3/M5/Galt/As46/4/Hj34-80/Astrix/5/M6/Robur35-6-3 (ICB88-1391-15AP-0AP-1AP-0TR-0AP), 17 = Mo.B 1337/W12291/Zambaka (ICB91-0481-0AP-0AP-0AP), 18 = Roho (-), 19 = Rhane-03/3/Roho/Alger/Ceres.362-1-1 (ICB85-0405-3AP-1AP-0TR-2AP-0TR-0AP), 20 = Rhane-03/3/Roho/Alger/Ceres.362-1-1 (ICB85-0405-3AP-1AP-0TR-2AP-0TR-0AP), 22 = Salinas/W1269/2 (ICB88-0457-1AP-3AP-1TR-0TR-0TR), 23 = UC566/5/M64-76/Bon/Jo/York/ 3/M5/Galt/As46/4/Hj34-80/Astrix (ICB83-1812-2AP-1AP-5AP-7AP-4AP-0TR-2AP-0AP-0TR-0AP), 24 = UC566/5/M64-76/Bon/Jo/York/3/M5/Galt//As46/4/Hj34-80/Astrix (ICB83-1812-2AP-1AP-5AP-7AP-4AP-0TR-0AP-5AP-0TR-OAP).

Figure 3. Reaction of barley lines to net blotch (A), powdery mildew (B), and scald (C) across three years (I: 2 x Standard deviation).
Discussion
In this study carried out in Kef area of Tunisia, the superiority of some introduced lines with regard to their disease resistance was confirmed. Bread wheat lines 5 and 6 with only 1 % of their spikes being bunted, could be considered as an important source of resistance to common bunt. However, all barley lines were smut free which makes them a promising germplasm for potential use by cereal breeders (1).

Using a more conservative level of selection than often utilized (4, 11) for barley foliar diseases, the most resistant were lines 20, 23, and 25 to net blotch, 2 and 5 to powdery mildew, and 1, 5, 16, and 18 to scald (Figure 3). Concerning the overall reaction to those barley foliar diseases, the most resistant was line 1, followed closely by lines 9, 10, and 18 (Figure 4). The above results suggest that for practical purposes, breeders have the choice of a smut resistant line which is also resistant to one or more foliar diseases.

Acknowledgements
The authors would like to thank the International Center of Agricultural Research in the Dry Areas (ICARDA) for kindly providing the seeds used in this study. The field assistance offered by technicians of the Plant Breeding Department of the Ecole Supérieure d’Agriculture du Kef (Tunisia) is highly appreciated.

References

Figure 4. Overall reaction of barley lines to net blotch, powdery mildew, and scald across three years (I: 2x Standard error)


Received: February 25, 2002; Accepted: November 26, 2002