بقاء البكتيريا Xanthomonas campestris pv. vesicatoria في التربة والبذور والبقايا النباتية

عز الاين محمد يونس العوامي، فتحي سطع المسماري وعوض محمد عبـ الرحير
قسم وقاية النبات، كلية الزراعه، جامعة عمر المختار، البيضاء، ليبيا؛ البريد الالكتروني: Azzawami2002@yahoo.com

الملخص

Xanthomonas campestris pv. العوامي، عز الاين بحمد يونس، فتحي سعد المسماري وعوض محمد عبد الرحيم. 2004. بقاء البكتيريا vesicatoria في التربة والبذور والبقايا النباتية. مجلة وقاية النبات العربية. 22: 147-150. أجري بحت على البكتيريا Xanthomonas campestris pv. vesicatoria (Doidge) Dye المسبية لمرض التّبقع البكتيري على الطماطم/البندورة لمعرفة مدى مدى بقائها في التربة والبذور والبقايا النباتية. أظهرت النتائج انخفاض التعداد البكتيري في البقايا النباتيّة سريعاً خلال الشهرين الأولين ثم أخذ التعداد يتل تكريجياً حتى نتتدت البكتيريا حيويتها في الشهر التاسع. من ناحية أخرى فتد زاد التعداد البكتيري في البذور خلال الأثشهر الثيلاث الأولى ثم انخفض بعد ذلك لتثنتد البكتيريا حيويتها بعد 7 أنهر . ألما في التربة فتد احتظظت البكتيريا بحيويتها لددة 8 أسابيع في التربة المعقمة بيئما لم تستطع المثابرة في التربة غير المعتمة أكثر من 5 أسابيع

كلمـات مفتاحية: بقاء البكتيريا، Xanthomonas campestris pv. vesicatoria، طماطم/بندورة

مو الد البحثٌ وطر ائقه

1. بقاء البكتيريا في التربة
X. campestris pv. لتحت التربة بإضافة معلقَ من الْككتيريا vesicatoria (Doidge) Dye غير معقمة وأخرى معقمة في أطباق بتري وبقدر كاف حتى تصل التربة إلى مرحلة قريبة من النشبع وذلك باستخدام مرشة يدوية. وحفظت الإطباق تحت ظروف رطوبة مرتفعة تعادل 99.9\% تقريباً (17) عند درجة حرارة 25 س، وجرى العزل أسبوعيأ على بيئة الآجار المغذي باستخدام طريقة التخفيفات.

> 2. بقاء البكتيريا في البنور

أخذت 10 غ من بذور الطماطم/البندورة (صنف Rio - Grande) وغمرت في معلق للبكتيريا X. campestris pv. vesicatoria يحمل
 استخدمت طريقة التفريغ (12). جففت البذور المعاملة هوائيأ (2) ثم حفظت عند درجة حرارة الغرفة داخل علب بلاستيكية مغلقة. و لإجراء الكثّف عن بقاء البكتيريا في هذه البذور تم غسيل 1 غ عن البذور في 99 هل من مطلول 0.1\% كربونات كالسيوم (وزن/حجم) (13)، ثٌ أجريت سلسلة من التخفيفات لعزل البكتيريا على بيئة الآجار المغذي.

3. بقاء البكتيريا في البقايا النباتية

حقنت مجموعة من شُتّلات الطماطم/البندورة بعمر مناسب (4-5 أسابيع) بمعلق للبكتيريا X. campestris pv. vesicatoria تركيزه 108 10 خلية /مل (12). بعد ذلك تم تجفيف الأوراق المحقونة قبل تخزينها عند درجة حرارة الغرفة. ولمعرنة مقدرة البكتيريا على البقاء في أنسجة النبات تم أخذ عينة (0.1 غ) من النباتات المحقونة والمجفة

المقّدمة
يستوجب وجود أي كانن ممرض في منطقةّ جغر افيةّ معينةّ قدرته
على البقاء حيأ ليس نقط أثناء فترة تطفلد على عائلة ولكن خال

 يعتمد على مقدرتها في تجنب أو تحمل الظروف البيئية غير الملانمة. وقد تبقى بعض الكائنات الممرضة حية بين مواسم زراعة المحصول على هيئة أجسام ساكنة أو مترممة في التربة، البذور أو على بقايا Xanthomonas campestris النبات (1، 11، 18). وتعتبر البكتيريا المسببة لمرض التبقع البكتيري من pv. vesicatoria (Doidge) Dye بين أهم الكائنات الممرضة المحمولة على بذور الطماطم/البندورة والفلفل (1، 7، 22)، وفي دراسة الخرى تم كشف هذه البكثيريا في بقايا المحصول المصابة بعد فترة 6 أشهر (13). وأشارت بعض الاراسات إلى أن بقاء هذه البكتيريا يظهر بشكل أكبر على البقايا الموجودة على سطح التربة أكثر مما هي عليه في البقايا المدفونة تحتها (17)، ويتفق مع ذلك Jones ومشاركوه (13) حيث لاحظوا حدوث Schuster تدهور سريع لهذه البكتيريا في التربة غير المعقمة، وأوضح و Coyne (20) أن بقاء كمية قليلة من اللقاح البكتيري قد يؤدي وبسرعة إلى حدوث إصابة وبائية للمرض. وبناء على ما ذكر عن أهمية بقاء البكتيريا في حدوث المرض ونكرار ظهوره، فقد هدف هذا البحث دراسة هصLادر العدوى بالتبقع البكتيزي على الطماطم/البندورة التي قد تعمل على حفظ اللقاح الاولي لاحداث الإصـابة الأولية وإمكانية تحديد الفترة الزمنية التي تحتفظ فيها البكتيريا بحيويتها على هذه . المصادر

شكل 1. بقاء البكتيريا X. campestris pv. vesicatoria في التربة المعقمة وغير المعقمة.
Figure 1. Survival of X. campestris pv. vesicatoria in sterilized and non-sterilized soil

اتل فرق معنوى (LSD) عند مستوى معنوية 5\% كان 0.9202 , 1.4519
على التوالي، لكل من التربة المعقمة وغير المعتمة. LSD at $\mathrm{P}=5 \%$ was 0.9202 and 1.4519 , respectively, for sterilized and non-sterilized soil.

2. بقاء البكتيريا في البذور

 الالثهه الثلات الأولى من التحضين، غير أنه لم يتعد أربعة اضضعان التعداد الابتاني، ثم أذذ التّعداد بعد ذلك في الانخفاض واستي الثهر الخامس عند مستوى لم يتجاوز وواصل التّعاد البكتيري انغفاضه بيطء خلال الشهر السادس إلى أن تعذر عزل البكتيريا تـامأ بعد الشهر السابع من التخزين. ششفق النتائج المتحصل عليها في هذه الاراسة مع ما وجده Devash وآخرون (9) في علهة مرضية أخرى، حيث أوضحوا أن بقاء البكتيريا P. syringe pv. tomato 6 أشهر فتط عند التخزين عند درجة حرارة الغرنة. وني تام بها Jones وآخرون (13) تم الكثّف عن البكتيريا تحت الار ابـــة عندما وضعت بذرة واحدة مصابة مع 999 بذرة سليمة، مما يؤكد

 على متدرتها على تحمل الظرون البئيةِ غير الملانمة؛ فنق وجد أن درجة الحرارة تؤثر بدرجة كبيرة على بقاء البكتِريا في البنور، وتد P. syringae pv. تكرين Schuster و Sayre (21) من عزل البكتيريا Phaseolicola (Burkholder) Young, Dye and Wilkie للفحة العادية على الفاصولِياء من بذور فاصولياء عمرها 8 هنوات كانت مخزنة عند درجةّ حرارة 10 س. وفي دراسة الـئ الخرى ظلت

الفاصوليا التي تم تخزينها عند درجةَ حرارة 20-35 س (3).

وسحقت في هارن يحتّوي 0.9 مل ماء متطر معقم، ثّم أجريت سلسلة من التخنيغات لعزل البكتيريا على بيئة الآجار المذذي.

النتائج و المناقشّة
 1. بعاء البكتيريا في الترية

X. campestris pv. vesicatoria عند الختَار متارة البكتيريا فيا

 وني المتابل، انخضض تعدادها بسر عة في التربة غير المقتة ولم تتعد فترة بتاءها شهرأ واحدأ (شكل 1). شنفق هذه النتانتج مع ما وجده
 أسبوعين نتط في التُربة غير المعقة، في حين المين استمر بقاءها نترة
 وآخرون (13) حيث لوحظ حدوث تاهور سريع لهذه البكتيريا في
 P. syringae pv. tomato (Okabe) مرضبة أخرى، فالبكتيريا Young, Dye and Wikie
 التربة الطبيعية او غير المعتة (4، 16)، كما أن تعداد البكتيريا X. campestris pv malvacearum (Smith) Dye الآتبّع الزاوي على التطن ينخفض سريعأ في التربة غير المعقمة معارنة بالتَبة المعتة (6). وعمومأ تد يرجع عدم بقاء البكتيريا في التربة غير المعتمة لنترة طويلة إلى حساسيتها للعورامل البيئبة ووجود الكانثنات

المضادة في التُربة (16).
 التزبة المعقة لم يسنل إلا 6.82\% من التُعداد الكلي خلد الأسبوب الرابع، في حين كانت النسبة المنئية الأكبر من التعداد للأكتيريا
 إلى تاثير الإزرازات السامة التي تتنجها جذور بعض النباتاتات. وعلاوة على هذه العوامل فتى يكون لبعض الظرون البئية الأخرى مشتل ارتناع

 مناسبة لبقاء البكتيريا، ففي بعض العاء العاهات المرضية الأخرى وجد أن البكتيربا P. solancearum (Smith) Smith والبكيريا A. tumefaciens (Smith and Townend) Conn التباء بشكل انضل تحت الظرون الرطبة للتربة. ويعبّر هذان النوعان من الكانثات المصرضة التي تنتيى لقاطنات التُربة الحقيقية (20).

في الأجزاء النباتية لمدة تسعة أشهر (شكل 2)، الفترة التي تعد كافية لاحتفاظ آلبكتيريا بحيوينها ما بين مواسم زراعة الطماطم/البندورة Jones وإحداث العدوى بعد ذلك. تنفق هذه النتائج مع ما وجده وآخرون (13)، حيث ذكروا أن هذه البكتيريا ظلت في بقايا المحصول المصاب لفترة 6 أشهر في ولاية فلوريا انوريدا بأمريكا. وسبق أن أكد Peterson
 الخارجي لأوراق النبات تنشأ من وجود البكتيريا في الأنسجة المريضة X. campestris pv. vesicatoria (23)، مما يؤكد أن البكتيريا تستطيع البقاء خارجياً على النبات لفترة قصبيرة والكن ليس ضرورياً أن يكون بإمكانها النمو على أسطح النباتات السليمة. وسجل بقاء البكتيريا على الاجز اء النباتية خلا المواسم الحرجة في عدة عالهات مرضية
 (19) X. campestris pv. phaseoli (Smith) Dye X. campestris pv. orzae (Ishiyama) Dye المتسبيــة عن البكتيريا (20، 24) واللفحة الهالية على الفاصولياء المتسببة عن اللككتيريا (20،5) X. campestris pv. malvacearum (Smith) Dye X. campestris pv. citri (Hasse) الحمضيات المتسبب عن البكتيريــا Dye على تحمل الظروف البيئية غير الملانمة حيث تعتبر الظروف الجافة أكثر ملاعمة لبقاء البكتيريا على الأجز اء النباتية المصابة (14، 15).

شُكل 2. بقـــاء البكتيـريا X. campestris pv. vesicatoria في البذور وبقايا نباتات الطماطم/البندورة المصـابة.
Figure 2. Survival of X. campestris pv . vesicatoria in seeds and diseased tomato plant residues

أقل نرق معنوي (LSD) عند مستوى معنوية 5\% كان 0.9215 و 0.7091؛ على التؤلي، لكل بل بن البذور والبقايا النباتيةّ. LSD at $\mathrm{P}=5 \%$ was 0.9215 and 0.7091 respectively, for seeds and plant residues
3. بقاء البكتيريا في البقايا النباتية
X. campestris pv. أظهرت نتائج هذه الاراسة أن البكتيريا
vesicatoria المعزولة من منطقة الجبل الأخضر قد احتفظت بحيويتها

Abstract

Alawami, A.M.Y., F.S. El-Mismary and A.M. Abdel-Rahim. 2004. Survival of Xanthomonas campestris pv. vesicatoria in soil, seeds and plant residues. Arab J. Pl. Prot. 22: 147-150.

A study of the survival of the bacterium Xanthomonas campestris pv. vesicatoria (Doidge) Dye, the causal organism of tomato spot disease, in plant debris, seeds and soil indicated that the bacterial population decreased quickly in inoculated plant debris within the first 2 months, then decreased gradually until complete disappearance after 9 months. In seeds, the population increased within the first 3 months then decreased and disappeared after 7 months. The bacterium remained viable in the sterile soil for 8 weeks but disappeared in non-sterile soil after 5 weeks.

Key wards: Bacterial survival, Xanthomonas campestris pv. vesicatoria ,tomato.
Corresponding author: Azzeddin M. Y. Alawami, Department of Pant Protection, Faculty of Agriculture, Omar Al-Mukhtar University, El-Beida, Libya; e-mail:Azzawami2002@yahoo.com

References

1. Agrios, G.N. 1997. plant pathology. Academic Press. Pages 416-417.
2. Bashan, Y., Y. Okon and Y. Henis. 1982. Long - term survival of Pseudomonas syringae pv. tomato and Xanthomonas campestris pv. vesicatoria in tomato and pepper seeds. Phytopathology, 72: 1142-1144.
3. Basu, P.K. and V.R. Wallen. 1966. Influence of temperature on the viability, virulence and physiological characteristics of Xanthomonas phaseoli. Candian Journal of Botany, 44: 1239-1245.
4. Bosshard-Heer, E. and J. Vogelsanger. 1977. Uberlebensfahigkeit von Pseudomonas tomato (Okabe) Alstatt in Verschiedenen Boden. Phytopathollogische Zeitschrift, 90: 193-202.
5. Brinkerhoff, L.A. 1970. Variation in Xanthomonas malvacearum and relation to control. Annual Review of Phytopathology, 8: 85-110.
6. Brinkerhoff, L.A. and G.B. Fink. 1964. Survival and infectivity of Xanthomonas malvacearum and its relation to control. Phytopathology, 54: 1198-1201.
7. Chen, M. and M. Alexander. 1973. Survival of soil bacteria during prolonged desiccation. Soil Biology Biochemistry, 5: 213-321.
8. Crossan, D.F. and A.L. Morehart. 1964. Isolation of Xanthomonas vesicatoria from tissues of Capsicum annum. Phytopathology, 54: 358-359.
9. Devash, Y., Y. Okan and Y. Henis. 1980. Survival of Pseudomonas tomato in soil and seeds. Phytopathollogische Zeitschrift, 99: 175-185.
10. Goto, M. 1972. The significance of the vegetation for the survival of plant pathogenic bacteria. Pages $39-53$. In: Proceeding of Third International Conference on Plant Pathogenic Bacteria. H. P. Geesteranus (Editor). Center for Agricultural Publishing and Documentation, Wageningen, The Netherlands.
11. Goto, M. 1992. Fundamentals of Bacterial Plant Pathology. Academic Press , INC. 342 pp.
12. Jones, J.B., S.M. McGarter and D.R. Smitly. 1981. A Vacuum infiltration inoculation technique for Detecting Pseudomonas tomato in soil and plant tissue. Phytopathology, 71: 1187-1190.
13. Jones, J.B., K.L. Pohronezny, R.E. Stall and J.P. Jones. 1986. Survival of Xanthomonas campestris pv. vesicatoria in Florida on tomato crop residues, weeds, seeds, and volunteer tomato plants. Phytopathology, 76 : 430-434.
14. Leben, C. 1973. Survival of plant pathogenic bacteria. The Second International Congress of Plant Pathology. Minneapolis. Abstract 326.
15. Leben, C. 1981. How plant pathogenic bacteria survive. Plant Disease Report, 51: 659-661.
16. McCarter, S.M., J.B. Jones, R.D. Gitaitis and D.R. Smithkey. 1983. Survival of Pseudomonas syringae pv. tomato in association with tomato seed. Soil host tissue and epiphytic weed hosts in Georgia. Phytopathology, 74: 1393-1398.

Received: October 16, 2003; Accepted: September 20, 2004
17. Peterson, G.H. 1963. Survival of Xanthomonas vesieatoria in soil and diseased tomato plants. Phytopathology, 53: 765-767.
18. Roberts, A.R. and C.W. Bothroyd. 1984. Fundamental of plant pathology. W. H. Freeman and Company U.S.A.
19. Schuster, M. L. 1955. A method for testing resistance of bean to bacterial blights. Phytopathology, 45: 519520.
20. Schuster, M.L. and D.P. Coyne. 1974. Survival mechanisms of phytopathogenic bacteria. Annual Review of Phytopathology, 12: 199-221.
21. Schuster, M.L. and R.M. Sayre. 1967. A Coryneform bacterium induces purple - colored seed and leaf hypertrophy of Phaseolus vulgaris and other Leguminosae. Phytopathology, 57: 1064-1066.
22. Shekhawat, P.S. and B.P. Chakravarti. 1976. Factors affecting development of bacterial leaf spot of chillies caused by Xanthomonas vesicatoria. Indian Phytopathology, 29: 392-397.
23. Timmer, L.W., J.J. Marois and D. Achor. 1987. Growth and survival of Xanthomonads under condtions nonconductive to disease development. Phytopathology, 77: 1341-1345.
24. Wakimoto, S. 1955. Overwintering of Xanthomonas oryzae on unhulled grains of rice. Agriculture Hortscience, 30: 1501.

تاريخ الاستلام: 2003/10/16؛ تاريخ المو انتّة على النشر : 2004/9/20

