المكافحة الكيميائية لتوقف بذور القطن وموت بادراته في محافظة نينوى بالعراق

جاسم محمود أحمد(1) وحسن حسن علي(2)

(1) قسم وقاية النبات، كلية الزراعة والغذاءات، جامعة الموصل، حمام العليان، العراق
(2) قسم الانتاج النباتي، المعهد الفني في النموذج، الموصل، العراق

المملص:

أحمد، جاسم محمود وحسن حسن علي. 1990. المكافحة الكيميائية لتوقف بذور القطن وموت بادراته في محافظة نينوى بالعراق.

استخدمت خمسة مبيدات فطرية جهائية وهي بنوميل (النورين)، وكاربيكرسيديا + تيرام (فيفاكس 200)، وفيفاكس ميثيل + تيرام (هيرديس)، وفيفاكس ميثيل (رافيولكس)، وبيع غهذاري هو مانزوزيب (دايتن) 60٪ في مكافحة توقف بذور القطن وموت بادراته، وتم الاضطراب عن الشائعات من الخطر P. ultimum Trow et al و P. anashdermatum (Edson) Fitzp. و بضعة من الجنس Kuhn اللذين تم تسجيلهما في الطبق في العراق للمرة الأولى. أثبتت المحاولات المخبرية عدم كفاءة المبيدات بنوميل وفيفاكس ميثيل ورافيولكس في تثبيت نحو القطن P. solani Kuhn المخبرة عاليًا في منع نمو عزتي القطن وثبات من التجارب المنجزة في الدفعة أن تهبط بذور القطن

كلمات مفتاحية: مبيدات القطن، مكافحة كيميائية، العراق.

المقدمة

يستخدم بذور القطن وموت بادراته من الأماكن المهمة على القطن نظرًا للاختلافات التي يُلاحظها بالمحصول الممكن بالأمراض الفطرية الأخرى (13). يسبب المرض بشكل رئيس P. solani Kuhn في الأماكن الأخرى من العالم (1، 3، 4، 17).

مواد وطرق البحث

تم إحضار بذور القطن معطفة، وبدأت مصابة، ومن عدة مناطق زراعية في نينوى، وبدأت الماء في عام 1990 و1991، وتم وضع البذور والبذور في مكان مظلم جاري لمساحة واحدة، ثم فُتحت المنطقة المصابة من الجذور أو السوائل الجذرية السفلي إلى أجزاء صغيرة بطول نصف مستقيماً، أما البذور المعطفة فأناقملت كاملاً في كل تهيم. عُدّت الأجزاء النباتية سطحية بحمراء في محلول هيبكروتندس تعود بتركيز 0.2٪ - 3 قطاع، ثم غُسلت بعاء مطر معقم، ووجفت بين أوراق شريحة معقمة، ثم زرعت

مجلة وقاية النبات العربية (1990) مجلد 8 (1) : 6
كيلوغرام تربة مزيخة معقمة بغاز بروميد الميثيل، ومهواة لمدة أسبوع، ووقاء عشرة بذور/أصبع (مكرو). لوحظ تربة كل أصبع بنحو طبق (نصف طبق/أصبع) حسب طريقة (16) Sydam et al. والمتفاوتية أيضاً بإعداد عزل الفطر الثلاثة، ووزعت بذور قطن غير معقمة بالعديد. كل عزلة مرت على ثلاث مرات، وتبع التصنيم PDA (C.R.D.). تم أخذ النتائج الفعلية بعد مراحل ثلاث مرات، وبعض النسب المئوية للاسترخاء على أساس عدد البذور الناجية، ولغة التعبير عن النتائج في مقالة المقارنة لاستخدام النشاط الإحصائي، بعد التحليل الزاوي، واستخدم اختبار دكان معيار المرحل (6) للاختبار بين الملوثات.

وتبع الطريقة نفسها لاختبار تأثير العوامل الفعلية في تثبيت نمو عزل الجنس R. solani. تم استخدام مادة فعال، وريازولك، وفيتاكانس - 200، وهوماوي واريزولك من كل مبيد. تم الفعلية، كما جرى. في الوقت نفسه، تفيد التجريبيات السابقة لاختبار تأثير سلبي المبيدات المستخدمة على بذور القطن. تم زراعة عشرة بذور معقمة بالعوامل في أصبع مملوءة برتين مغمو بعذرة T. solani. أما العوامل فوزت بذور غربة معفري بالعديد في كمية معقمة في الورقة. ووزعت كل عزلة على ثلاث مرات، كما تم اختبار كفاءة العوامل التي تبين فعالاً في مكافحة المرض أن كل عزلة على حدة من خلال معدلات المرض المتبقي عن خلايا من الفطر المحترقة باستخدام المعادلات التالية:

1 - نتائج تبليئ + ريدوموز تكرير 0.1% مادة فعال.
2 - ريدوموز تكرير 0.2% + ريدوموز تكرير 0.1% مادة فعال.
3 - فيتاكانس - 200 تكرير 0.2% مادة فعال.

حيث استعملت النافذة 15 سم تحت 1.5 كغ تربة مزيخة، وتوفر الطرق في من نظام بحري حديث (4) R. solani ونوعي الجنس، وميت ونوعي القطن، انسحاب مجموع Pythium اللفاح برتين كاملاً/أصبع. وربت الأصبع ترکب مادة يومية حسب طريقة (6) Saydam et al. وزعت بذور قطن صنف كوك 310 ونفة. مغمو بإجمالي المحميات المذكورة بواقي 15 بذرة/أصبع. أما معالمة المقارنة فوزت بذور غير معقمة بالعديد، زكرت كل عزلة أربع مرات، واتبع التصنيم العشوي الكامل (C.R.D.). وأخذت النتائج النهائية بعد ثلاثية.

اختبرت كفاءة العوامل في مكافحة المرض المتبقي عن الفطر R. solani البستر برديسوبتيوم بيتزانيو 0.04% ونافذة الفطر المحترقة عن درجة 25° C. وتم اختبار الفاعلية على الغلاط المزح بعد تنقيته، وذلك في التجربة أولي في الخيمة. وعندما تم اختبر عزلة R. solani، ووزعت على الغلاط الفعلية بسعة ثانية من الفطر نفسه وضعه هذه العملية، كما واسعن تنائي من هذه الفطر إلى معهد الكوماند الدولي للفطر، وتمت دراستها مخبرياً لأعراض التشخيص.

اختبرت تأثير ستة مبيدات فعالية هي بومييل (بلينتي)، كاروبكسين + ثيرام (فيتاكانس - 200) وفيتامين ميثيل + ثيرام (هوماوي)، ومالاكيديل (ريدوموز)، وزيكسوفيسيك (ريازولك) ومانزوزبيك (داينت إس - 60) على نمو عزلة PDA (CMI) إلى المعادلة الدولية للفطر، وتم اقتصاده إلى المعادلة هذه ونفاد عدسة مبتكر هو 0.006 و0.125 و0.025 و0.017 و0.06 و0.05 و0.05 و0.05 (CMI فعال، ونافذة هذه الفعلية حالي 45 مم) بما يناسب نسب الفعلية المداينة. وعند تأثير الأطراف على الفطر تبنيم العواملоляية 9 سم، ووضع على الجهة العضوية لكل طبق بذور الفطر. انحراف كوك تصلب 100 طبق بذور معفي بالعديد. وظل شخص الطرق تصلب الفعلية بوساطة طابق فلنج معحم. وقد نتجت أطراف تأثير الثانيه الفعلية الفعلية بدون إضافة المبيدات للمقارنة. وتم استخدام ما مبتكر للعوامل المختلفة، في المعمل الفاعل، في المعادلات المختلفة، والأخير بحسب متوسط قياس تقارير متبقي للمسلمات الثلاثة.

* Close-fitting مادة الفعلية تتمثل وزن المادة الفاعلة نسبة إلى وزن بذور القطن المعقمة.
Table 1. Efficacy of certain fungicides in controlling cotton damping-off caused by *P. solani*.

<table>
<thead>
<tr>
<th>Isolate</th>
<th>Conc.</th>
<th>Fungicide</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.5</td>
<td>50%</td>
<td>Dithane-60</td>
</tr>
<tr>
<td>3.0</td>
<td>50%</td>
<td>Vitavax-Thiram (Vitavax-200)</td>
</tr>
</tbody>
</table>

isolates from the pathogen at the 1% level, according to the range test. |
أثبتت كفاءتها مخبرياً في تثبيط نمو غزل نويعي الجنس Pythium تحت ظروف الجفاف، أن السيدوميل والفيتافاكس - ثيروم عند التركيز العالي فقط، كانت أفضل المبيدات المختبرة.

أما في حالة الاصابة بعد الانتشار فقد كان ريدوميمل فعالاً عند التركيز المستخدم، بالإضافة إلى المبيدات الأيماس قبل الظهور.

وتشير إلى أن الأصابات بعد الانتشار كانت قليلة في مكافحة المقاومة، ويرجع ذلك إلى تفعيل البذور وظهور البذور فوق سطح التربة، وأما الانتشار الذي ظهره قد أصيب جميعها بعد الانتشار. وبواسطة من معدل إجمالي الأمراض أن أفضل المبيدات المختبرة في مكافحة المرض بالتكير عن R. solani الفطر المستخدم كان فيتافاكس – ثيروم، وذلك بتفعيل البذور المزروعة بعد هذه المبيدات تتكير 2% مادة فعالة، أي ما يعادل 2 غ مادة

فعلة/كغ.

وحيض من الجدول 2 الذي يبين تنازل احتراب المبيدات التي

Table 2. Efficacy of certain fungicides in controlling cotton damping-off caused by Pythium ultimum and P. aphanidermatum

<table>
<thead>
<tr>
<th>P. aphanidermatum</th>
<th>P. ultimum</th>
</tr>
</thead>
<tbody>
<tr>
<td>معدل الاصابة</td>
<td>معدل الاصابة</td>
</tr>
<tr>
<td>بالفطريين</td>
<td>بالفطريين</td>
</tr>
<tr>
<td>Mean</td>
<td>Mean</td>
</tr>
<tr>
<td>45.5bc*</td>
<td>29.5</td>
</tr>
<tr>
<td>41.7bc</td>
<td>12.5</td>
</tr>
<tr>
<td>28.8c</td>
<td>23.3</td>
</tr>
<tr>
<td>14.8c</td>
<td>14.8</td>
</tr>
<tr>
<td>68.0b</td>
<td>44.8</td>
</tr>
<tr>
<td>34.4c</td>
<td>31.9</td>
</tr>
<tr>
<td>3.9d</td>
<td>0.0</td>
</tr>
<tr>
<td>0.0d</td>
<td>0.0</td>
</tr>
<tr>
<td>75.0a</td>
<td>62.5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>P. aphanidermatum</th>
<th>P. ultimum</th>
</tr>
</thead>
<tbody>
<tr>
<td>ترتكز المبيد</td>
<td>علة البذور</td>
</tr>
<tr>
<td>Post-emergence</td>
<td>Pre-emergence</td>
</tr>
<tr>
<td>%</td>
<td>%</td>
</tr>
<tr>
<td>مادة فعالة</td>
<td></td>
</tr>
<tr>
<td>17.6abc*</td>
<td>7.8</td>
</tr>
<tr>
<td>8.4bcd</td>
<td>12.5</td>
</tr>
<tr>
<td>23.3ab</td>
<td>23.3</td>
</tr>
<tr>
<td>14.8abc</td>
<td>14.8</td>
</tr>
<tr>
<td>37.3a</td>
<td>30.7</td>
</tr>
<tr>
<td>19.1abc</td>
<td>13.9</td>
</tr>
<tr>
<td>7.7</td>
<td>7.7</td>
</tr>
<tr>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>33.4a</td>
<td>37.2</td>
</tr>
</tbody>
</table>

Numbers with same letters are not significantly different at the 1% level, according to Duncan’s multiple range test.
Table 3. Efficacy of certain fungicide-mixtures in controlling cotton damping-off caused by the fungal mixtures: Rhizoctonia solani (two isolates), Pythium ultimum and P. aphanidermatum

<table>
<thead>
<tr>
<th>Fungicide-mixture</th>
<th>Conc. %a.i</th>
<th>Pre-emergence infection %</th>
<th>Post-emergence infection %</th>
<th>Total infection %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>100.0a</td>
<td>0.00b</td>
<td>0.00b</td>
<td>0.00b</td>
</tr>
<tr>
<td>Vitavax-Thiram</td>
<td>0.2</td>
<td>3.80a</td>
<td>5.00ab</td>
<td>9.6b</td>
</tr>
<tr>
<td>Rizolex + Ridomil</td>
<td>0.2</td>
<td>0.0c</td>
<td>0.0c</td>
<td>13.5b</td>
</tr>
<tr>
<td>Benlate + Ridomil</td>
<td>0.2</td>
<td>0.4b</td>
<td>0.4b</td>
<td>13.5b</td>
</tr>
<tr>
<td>Benlate + Ryderol</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rizolex + Ryderol</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pythium butleri + R. solani</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mat & Fungicide-mixture</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Numbers with same letters are not significantly different at the 1% level, according to Duncan's multiple range test.
Abstract

Six fungicides (Benlate, Vitavax-thiram, Homai, Ridomil, Rizolex and Dithane-S-60) were tested to control seed rot and cotton damping-off caused by two isolates of *Rhizoctonia solani* Kühn in addition to *Pythium ultimum* Trow. and *P. aphanidermatum* (Edson) Fitzp. which were recorded for the first time as pathogens of cotton in Iraq. Laboratory tests coupled with glasshouse seed-treatment experiments showed that Rizolex, Benlate and Vitavax-thiram were each effective in controlling the disease caused by *R. solani* when used at 0.2% a.i. Also, Ridomil (0.1 a.i.) and Vitavax-thiram (0.2% a.i.) successfully controlled the disease caused by either species of *Pythium*. However, using the same concentrations, the fungicide mixtures Benlate-Ridomil, Rizolex-Ridomil, or Vitavax-thiram controlled the disease when a mixed inoculum of the two *R. solani* isolates, *P. ultimum* and *P. aphanidermatum* was used. The above mentioned treatments did not cause any visible phytotoxicity.

Key words: cotton damping-off, chemical control, Iraq.

References

المراجع
